What is KVR Audio? | Submit News | Advertise | Developer Account

Options (Affects News & Product results only):

OS:
Format:
Include:
Quick Search KVR

"Quick Search" KVR Audio's Product Database, News Items, Developer Listings, Forum Topics and videos here. For advanced Product Database searching please use the full product search. For the forum you can use the phpBB forum search.

To utilize the power of Google you can use the integrated Google Site Search.

Products 0

Developers 0

News 0

Forum 0

Videos 0

Search  

List of Vsti's that support Tun/scala files for Microtonal

VST, AU, etc. plug-in Virtual Instruments discussion

Moderator: Moderators (Main)

memyselfandus
KVRAF
 
3904 posts since 28 Apr, 2006

Postby memyselfandus; Thu Nov 29, 2012 8:19 am

JamOrigin wrote:Our new polyphonic MIDI Guitar plugin will get .tun support soon, so that synths no longer need to support it to work with guitars.


:party: :hyper: :clap: :clap: :party:
User avatar
aMUSEd
KVRAF
 
20052 posts since 14 Sep, 2002, from In teh net

Postby aMUSEd; Fri Dec 07, 2012 3:29 pm

Of course the original one to support tun was Anamark (Marc invented the format for Anamark)

Pity there isn't a Mac version of it
terriandralph
KVRist
 
156 posts since 24 Sep, 2007

Postby terriandralph; Sat Dec 08, 2012 7:05 am

Is Harmless capable of microtuning? Please let me know how to utilize it. I think Harmor is capable of microtuning though.
User avatar
~Pd~
KVRian
 
722 posts since 29 Jul, 2006

Postby ~Pd~; Sat Mar 01, 2014 12:09 pm Re: List of Vsti's that support Tun/scala files for Microtonal

Bumping old thread to see if there are more / new plugins that support microtuning! I've become obsessed with nonstandard tunings... synths I have right now that support it are Absynth, Synthmaster (could use some improvement in this area), Aalto and Reaktor (using macros from the user library).

Others I've looked at:

Alchemy - don't like the additional latency
Urs stuff - thinking about plonking down the $$ for Zebra.
Z3TA+ 2 - didn't interpret a 7 note equal temperament .scl properly - very disappointing!
yessongs
KVRian
 
835 posts since 9 Feb, 2013, from dallas tx

Postby yessongs; Sun Mar 02, 2014 1:58 pm Re: List of Vsti's that support Tun/scala files for Microtonal

I would think many people would want to use scala as a way to transpose to 432hz tuning for A instead of 440. Anyone do this yet.
User avatar
aMUSEd
KVRAF
 
20052 posts since 14 Sep, 2002, from In teh net

Postby aMUSEd; Sun Mar 02, 2014 2:28 pm Re: List of Vsti's that support Tun/scala files for Microtonal

~Pd~ wrote:Bumping old thread to see if there are more / new plugins that support microtuning! I've become obsessed with nonstandard tunings... synths I have right now that support it are Absynth, Synthmaster (could use some improvement in this area), Aalto and Reaktor (using macros from the user library).

Others I've looked at:

Alchemy - don't like the additional latency
Urs stuff - thinking about plonking down the $$ for Zebra.
Z3TA+ 2 - didn't interpret a 7 note equal temperament .scl properly - very disappointing!


Pianoteq probably has amongst the best support for micro tuning as it properly supports keyboard mapping as well as scl itself (you really need both to get the best from alternate tunings)
User avatar
~Pd~
KVRian
 
722 posts since 29 Jul, 2006

Postby ~Pd~; Sun Mar 02, 2014 8:21 pm Re: List of Vsti's that support Tun/scala files for Microtonal

yessongs wrote:I would think many people would want to use scala as a way to transpose to 432hz tuning for A instead of 440. Anyone do this yet.


Most instruments have a master fine pitch to accomplish stuff like that, no? The ratios between the notes would remain the same (12-TET). Scala is more for changing the relationships between notes in the scale, or dividing the octave into a different number of intervals.
User avatar
BasariStudios
KVRist
 
410 posts since 25 Sep, 2011, from New York

Postby BasariStudios; Sun Mar 02, 2014 8:29 pm Re: List of Vsti's that support Tun/scala files for Microtonal

Albino used to support Tun files too, i mean it still does with the latest version too, sadly Blue does not.
http://www.basaristudios.com
Definition of a Musician:
A man who puts 5000$ worth of Music Equipment into a 500$ Car and then drives 100 Miles to play music for 100$.
User avatar
~Pd~
KVRian
 
722 posts since 29 Jul, 2006

Postby ~Pd~; Sun Mar 02, 2014 8:47 pm Re: List of Vsti's that support Tun/scala files for Microtonal

aMUSEd wrote:Pianoteq probably has amongst the best support for micro tuning as it properly supports keyboard mapping as well as scl itself (you really need both to get the best from alternate tunings)


From my experiments with various instruments I like an implementation that interprets 1/1 as middle C, and the rest of the pitches should be arranged around that. Then most instruments have master tuning options to fine-tune that, no pun intended.

I guess the keyboard mapping would be useful if you were working with a score where the composer had certain very specific intentions. I'm more of an explorer.
woggle
KVRist
 
499 posts since 23 Nov, 2012

Postby woggle; Sun Mar 02, 2014 8:53 pm Re: List of Vsti's that support Tun/scala files for Microtonal

too lazy to check all the post but http://www.xen-arts.com/
jancivil
KVRAF
 
9585 posts since 20 Oct, 2007

Postby jancivil; Sun Mar 02, 2014 10:41 pm Re: List of Vsti's that support Tun/scala files for Microtonal

Vienna Instruments Pro will deal with any 12-note scala and its interface lets you set root pitch. so if you have less than you can manipulate it by duplicates in the row, but more than 12 doesn't happen. ratios or cents. Making a .scl is a text file written properly with that extension, that's all it is.
User avatar
~Pd~
KVRian
 
722 posts since 29 Jul, 2006

Postby ~Pd~; Mon Mar 03, 2014 8:59 pm Re: List of Vsti's that support Tun/scala files for Microtonal

I just found out that Synthmaster works 100% perfectly for microtunings as long as you give it the kind of .scl file that usually goes along with a .kbm keyboard map - one where every MIDI note from 0 to 127 is specified. This is sort of the way Absynth tunings work with .gly file imports for scales, and Zebra with .tun files.

Will post some Synthmaster-optimized .scl files shortly.
User avatar
arachnaut
KVRist
 
285 posts since 29 Aug, 2006, from Eta Carinae

Postby arachnaut; Mon Mar 03, 2014 10:22 pm Re: List of Vsti's that support Tun/scala files for Microtonal

This is off-topic, but from the questions asked, I thought it may be appropriate.

A long time ago, probably in the 1980's, I became interested in non-standard tunings and I made a study of them.

I made a series of notes which I later transcribed to a computer text file that was full of interesting tidbits.

I will try to decipher those notes and amplify the thought behind them.

My goal was to be able to make a scale with any number of notes per octave and any interval between notes. I imagined I would use some math constants like pi, e, or phi, etc., thinking naively that these would sound good.

I started with these definitions and some remedial algebra:

Code: Select all
1 cent = 2**(1/1200) = 1.000577789507  ~= 1667/1666, or better, 1731/1730

an interval of c cents: from frequency f1 to f2 =
      f1/f2 = 2 ** (c/1200)

the interval f1:f2 = 2 (1200 cents) = 1 octave

To find the number of cents in an interval f1:f2 = R
     2**(c/1200) = R
    therefore, c = 1200 log R/log 2 =

      c(R) = 3986.313713865 log R

      c(f1:f2) = 3986.313713865 log (f1/f2)
               = 3986.313713865 log f1 - 3986.313713865 log f2
               = c(f1) - c(f2)

If a scale is equally tempered, and contains n tones per octave,
then the interval from note to note is
         interval(n) =   1200/n

Note: the ear can discern about 3.459 cents: (@500 Hz one can
discern 1 Hz difference). (depends on freq., loudness, etc.)

Note: if a**n = b
      then n = log b/log a

Savart:
s(R) = 1000 log R = 3.986 c(R)
1 savart = 3.986 cents ~= 436/435 ~= just noticeable difference


Next I made a list of all the commonly named intervals as well as some numerology:

Code: Select all
Interval name      interval value     cents in interval
---------------    ---------------    -----------------
unison                  1:1                0.000
jnd                     501:500            3.459   just noticeable difference
savart                 ~436:435            3.986
   a skilled player can stretch a note on an instrument
   by as much as 20 cents to be in tune with other instruments
syntonic comma          80:81             21.506
Pythagorean comma       531441:524288     23.460   3**12/2**19
diesis                  128:125           41.059
smaller chromatic semitone
                        25:24             70.672
Pythagorean diatonic semitone = limma
                        256:243           90.225   2**8/3**5
larger chromatic semitone (small limma)
                        135:128           92.179
minor second            18:17             98.955
semitone                16:15            111.731
Pythagorean chromatic semitone
                        2187:2048        113.685   3**7/2**11
meantone semitone       8:(5*fourth_root(5)) 117.108
                        13:12            138.573
                        12:11            150.637
                        11:10            165.004
                        65536:59049      180.450
minor tone              10:9             182.404
meantone whole tone     sqrt(5):2        193.157
                        449:400          200.059
major tone  (Pythagorean whole tone) ---
                        9:8              203.910    3**2/2**3 (two fifths)
                        256:225          223.462    (two semitones)
                        8:7              231.174
                        pi:e             250.561    3.14159../2.71828...
                        7:6              266.871
                        13:11            289.210
                        32:27            294.135
minor third             6:5              315.641
                        19683:16384      317.595
                        11:9             347.408
                        100:81           364.807   (two minor tones)
                        8192:6561        384.360
major third             5:4              386.314
                        81:64            407.820   (two major tones)
                        9:7              435.084
                        13:10            454.214
perfect fourth          4:3              498.045
                        11:8             551.318
                        7:5              582.512
                        1024:729         588.270
augmented fourth        45:32            590.224
       (also called a tritone = two major tones + 1 minor tone)
diminished fifth        64:45            609.777
                        729:512          611.730
                        10:7             617.488
                        36:25            631.283   (two minor thirds)
                        13:9             636.618
                        262144:177147    678.495
perfect fifth           3:2              701.955
                        25:16            772.628   (two major thirds)
                        11:7             782.492
                        128:81           792.180
minor sixth             8:5              813.686
                        6561:4096        815.640
                        phi:1            833.090    phi = 1.618033988749
                        13:8             840.528
                        32768:19683      882.405
major sixth             5:3              884.359
                        27:16            905.865
                        12:7             933.129
harmonic minor seventh  7:4              968.826
grave minor seventh     16:9             996.090  (two perfect fourths)
minor seventh           9:5             1017.596
                        59049:32768     1019.550
                        11:6            1049.363
                        13:7            1071.702
                        4096:2187       1086.315
major seventh           15:8            1088.269
                        243:128         1109.775
                        1048576:531441  1176.540
octave                  2:1             1200.000


Then I went on to show how a scale could be made of equal intervals. When the next interval exceeds an octave, drop down an octave. Keep on adding intervals until you get enough notes or the new intervals are too close to older intervals.

Here are example scales made of intervals of fifths and fourths:

Code: Select all

Various octave generations:

       Intervals of fifths            cents
     ------------------------           ---
        3       :       2       =        702
        9       :       8       =        204
        27      :       16      =        906
        81      :       64      =        408
        243     :       128     =       1110
        729     :       512     =        612
        2187    :       2048    =        114
        6561    :       4096    =        816
        19683   :       16384   =        318
        59049   :       32768   =       1020
        177147  :       131072  =        522
        531441  :       524288  =         23.46   (x)   <- stop here
        1594323 :       1048576 =        725      (x)

---------------------------------------------------------

Last results, sorted:

        2187    :       2048    =        114   c+
        9       :       8       =        204   d
        19683   :       16384   =        318   d+
        81      :       64      =        408   e
        177147  :       131072  =        522   f
        729     :       512     =        612   f+
        3       :       2       =        702   g
        6561    :       4096    =        816   g+
        27      :       16      =        906   a
        59049   :       32768   =       1020   a+
        243     :       128     =       1110   b

----------------------------------------------------


Intervals of fourths                    cents
--------------------                    -----
        4:3                             498.045
        16:9                            996.090
        64:27 -> 32:27                  294.135
        128:81                          792.180
        512:243 -> 256:243               90.225
        1024:729                        588.270
        4096:2187                      1086.315
        16384:6561 -> 8192:6561         384.360
        32768:19683                     882.405
        131072:59049 -> 65536:59049     180.450
        262144:177147                   678.495
        1048576:531441                 1176.540    <- stop here


---------------------------------------------------------

Last results, sorted:


        256:243                          90.225
        65536:59049                     180.450
        32:27                           294.135
        8192:6561                       384.360
        4:3                             498.045
        1024:729                        588.270
        262144:177147                   678.495
        128:81                          792.180
        32768:19683                     882.405
        16:9                            996.090
        4096:2187                      1086.315
        1048576:531441                 1176.540


And finally, a way to express irrational numbers as simple fractions. The method is to form a simple continued fraction and quit when the next iteration falls below the 'just noticeable difference' audibly:

Code: Select all
Sometimes a decimal or large-numbered fraction is to be expressed as
an approximation to a small-numbered fraction:

Method of continued fractions to express a decimal number as
a fraction of suitable accuracy:

      example:   1.265625

1.265625 = 1 + 265625/1000000 =
           1 + 1/(1000000/265625) =
           1 + 1/(3 + 203125/265625) =
           1 + 1/(3 + 1/(265625/203125)) =
           1 + 1/(3 + 1/(1 + 62500/203125)) =
           1 + 1/(3 + 1/(1 + 4/13)) =
           1 + 1/(3 + 1/(1 + 1/(13/4))) =
           1 + 1/(3 + 1/(1 + 1/(3 + 1/4)))
first approx:  1 + 1/3 =                           4:3  = 1.3333.. = 498 cents
second:        1 + 1/(3+1) =                       5:4  = 1.25     = 386 cents
third:         1 + 1/(3 + 1/(1+1/3) = 1 + 4/15 =  19:15 = 1.2666   = 409 cents
fourth:        complete term                      81:64 = 1.265625 = 408 cents

Since there is no discernable different between 408 and 409 cents,
to the ear 81:64 = 19:15.


I hope this is useful to someone, I completely forgot I had this saved away in my computer attic.

Nowadays when I compose I don't use pitch or meter for much any more - its all noise to me.
Jim Hurley
google.com/+JimHurley
http://www.arachnaut.net
http://soundcloud.com/arachnaut
Windows 8.1 Pro with Media Center (64-bit)
User avatar
~Pd~
KVRian
 
722 posts since 29 Jul, 2006

Postby ~Pd~; Tue Mar 04, 2014 5:23 am Re: List of Vsti's that support Tun/scala files for Microtonal

Interesting stuff, Jim, thanks for the info. I'm keen on exploring algorithmically generated scales like the fifths idea. Have you ever worked with Lucy tunings, where the intervals are calculated based on Pi?

I'm still thinking in terms of meter and tonality, haven't gone completely zen yet. :D
User avatar
BasariStudios
KVRist
 
410 posts since 25 Sep, 2011, from New York

Postby BasariStudios; Tue Mar 04, 2014 6:04 am Re: List of Vsti's that support Tun/scala files for Microtonal

Here is some Microtuned stuff that i play live:
http://www.youtube.com/watch?v=gYhvTKwXULU
http://www.basaristudios.com
Definition of a Musician:
A man who puts 5000$ worth of Music Equipment into a 500$ Car and then drives 100 Miles to play music for 100$.
PreviousNext

Moderator: Moderators (Main)

Return to Instruments